11206 measured reflections

 $R_{\rm int} = 0.106$

2109 independent reflections

1295 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Fluorophenyl)-3-hydroxy-3-phenylprop-2-en-1-one

Chun-Yang Zheng,^a* Dun-Jia Wang^b and Ling Fan^b

^aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002,People's Republic of China, and ^bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail: zcy800204@163.com

Received 10 December 2008; accepted 10 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.140; data-to-parameter ratio = 12.7.

In the crystal structure the title compound, $C_{15}H_{11}FO_2$, the molecule exists in the enol form. It is stabilized by an intramolecular $O-H \cdots O$ hydrogen bond, in which the donor O-H and acceptor $H \cdots O$ distances are almost equal. The dihedral angle between the two benzene rings is 22.30 (4)°.

Related literature

For background to the uses and characteristics of 1,3-diketones, see: Gilli *et al.* (2004); Hasegawa *et al.* (1997); Jang *et al.* (2006); Ma *et al.* (1999); Yoshida *et al.* (2005). For geometric data, see: Bertolasi *et al.* (1991); Wang *et al.* (2006).

Experimental

Crystal data

$C_{15}H_{11}FO_2$
$M_r = 242.24$
Monoclinic, $P2_1/c$
a = 11.8526 (5) Å
b = 11.7192 (5) Å
c = 9.4164 (4) Å
$\beta = 113.405 \ (1)^{\circ}$

V = 1200.35 (9) Å³ Z = 4Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 298 K $0.30 \times 0.10 \times 0.04 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.991, T_{\max} = 0.996$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.140$	independent and constrained
S = 0.93	refinement
2109 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots O1$	1.23 (3)	1.30 (3)	2.4827 (19)	157 (2)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Hubei Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2112).

References

- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.
- Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.
- Hasegawa, E., Ishiyama, K., Fujita, T., Kato, T. & Abe, T. (1997). J. Org. Chem. 62, 2396–2400.

Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718–725.

Ma, Y. L., Reardon, D., Gambarotta, S. & Yap, G. (1999). Organometallics, 18, 2773–2781.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, D.-J., Zheng, C.-Y. & Fan, L. (2006). Acta Cryst. E62, 03681-03682.

Yoshida, J., Sato, H., Yamagishi, A. & Hoshino, N. (2005). J. Am. Chem. Soc. 127, 8453–8456.

supplementary materials

Acta Cryst. (2009). E65, o519 [doi:10.1107/S1600536809004747]

1-(4-Fluorophenyl)-3-hydroxy-3-phenylprop-2-en-1-one

C.-Y. Zheng, D.-J. Wang and L. Fan

Comment

1,3-Diketones posses a broad spectrum of useful and sometimes unique chemical properties, which make them extremely attractive as intermediates in syntheses (Hasegawa *et al.*, 1997). They are also used in the chemistry of metallocomplexes (Ma *et al.*, 1999; Yoshida *et al.*, 2005; Jang *et al.*, 2006). 1,3-Diketone structures have received increasing attention due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Gilli *et al.*, 2004). The crystal structure of the title compound (Fig. 1) is in the enol form, stabilized by an intramolecular hydrogen bond (Table 2). The bond lengths in the diketone fragment are either significantly shorter than normal single bonds or significantly longer than normal double bonds (Table 1). This shows that the structure displays a strong delocalization of double bonds in this region. The geometric data are in agreement with reported literature values (Bertolasi *et al.*, 1991; Wang *et al.*, 2006). The dihedral angle between the two aromatic rings is 22.30 (4)°.

Experimental

1-(4-Fluorophenyl)ethanone (1.38 g, 0.01 mol), ethyl benzoate (1.50 g, 0.01 mol), NaNH₂ (0.78 g, 0.02 mol) and dry ether (40 ml) were placed in a round bottom flask. The mixture was stirred 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO₃ solution, dried over anhydrous Na₂SO₄ and the solvent was removed by evaporation. The residual solid was recrystallized from an ethanol solution to give the title compound (yield 1.27 g, 52.4%, m.p. 351 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of CHCl₂–EtOH (1:5) solutions at room temperature.

Refinement

The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with $U_{iso}(H) = 1.5 U_{iso}(O)$. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-(4-Fluorophenyl)-3-hydroxy-3-phenylprop-2-en-1-one

$F_{000} = 504$
$D_{\rm x} = 1.340 {\rm ~Mg} {\rm ~m}^{-3}$
Melting point: 351 K
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 2616 reflections
$\theta = 2.6 - 22.7^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 298 K
Plate, colourless
$0.30 \times 0.10 \times 0.04 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	2109 independent reflections
Radiation source: fine-focus sealed tube	1295 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.106$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.991, T_{\max} = 0.996$	$k = -13 \rightarrow 13$
11206 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.0849P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{max} < 0.001$
2109 reflections	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y C1 0.0742 (6) 0.27135 (19) 0.29172 (18) 0.4883(2)C2 0.29882 (19) 0.17926 (17) 0.4841 (2) 0.0804 (6) 0.096* H2 0.2565 0.1236 0.5136 C3 0.4358 (2) 0.38951 (19) 0.14902 (16) 0.0753 (6) H3 0.090* 0.4082 0.0722 0.4329 C4 0.45487 (16) 0.23125 (14) 0.39078 (19) 0.0600(5)C5 0.42305 (18) 0.34513 (15) 0.0694 (6) 0.3965(2)Н5 0.4645 0.4018 0.083* 0.3673 C6 0.33131 (19) 0.37574 (17) 0.4446(2)0.0781 (6) H6 0.3106 0.4520 0.4473 0.094* C7 0.55320 (17) 0.19568 (14) 0.3396(2) 0.0634 (5) C8 0.27122 (14) 0.3102(2)0.63154 (16) 0.0627(5)H8 0.6220 0.3491 0.3208 0.075* C9 0.72513 (17) 0.23318 (15) 0.2648 (2) 0.0664(5)C10 0.81581 (16) 0.30949 (15) 0.2408(2)0.0635 (5) C11 0.8874 (2) 0.26895 (18) 0.1647 (2) 0.0811 (6) H11 0.097* 0.87780.1941 0.1291 C12 0.9732 (2) 0.3393(2)0.1414 (3) 0.0959(7) H12 1.0190 0.3116 0.0883 0.115* C13 0.99055 (19) 0.4487 (2) 0.1958 (3) 0.0909(7) H13 1.0486 0.4952 0.1811 0.109* 0.92093 (19) C14 0.48972 (18) 0.2731 (2) 0.0901 (7) H14 0.9329 0.5639 0.3112 0.108* 0.0781 (6) C15 0.42134 (17) 0.83398 (19) 0.2941 (2) H15 0.7869 0.4505 0.3445 0.094* F1 0.18286 (12) 0.32154 (11) 0.1081 (5) 0.53824 (16) 01 0.56461 (14) 0.08669 (11) 0.32400 (18) 0.0923 (5) O2 0.24314 (19) 0.73642 (15) 0.12538 (11) 0.0931 (5) H2A 0.650(2) 0.087(2) 0.270(3) 0.140*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0767 (13)	0.0819 (14)	0.0718 (13)	-0.0013 (11)	0.0378 (11)	0.0039 (10)
C2	0.0866 (15)	0.0725 (14)	0.0856 (15)	-0.0167 (11)	0.0379 (12)	0.0098 (11)
C3	0.0870 (14)	0.0523 (12)	0.0853 (14)	-0.0058 (10)	0.0329 (12)	0.0056 (9)
C4	0.0695 (11)	0.0483 (10)	0.0548 (11)	-0.0051 (8)	0.0170 (9)	0.0040 (8)
C5	0.0849 (14)	0.0483 (11)	0.0837 (14)	-0.0008 (9)	0.0428 (11)	0.0040 (9)
C6	0.0959 (15)	0.0591 (12)	0.0938 (15)	0.0021 (10)	0.0530 (13)	0.0009 (10)
C7	0.0750 (12)	0.0442 (10)	0.0667 (12)	0.0046 (9)	0.0235 (10)	0.0011 (8)
C8	0.0714 (12)	0.0430 (10)	0.0733 (12)	0.0053 (8)	0.0284 (10)	-0.0035 (8)
C9	0.0777 (13)	0.0523 (11)	0.0640 (12)	0.0101 (9)	0.0227 (10)	-0.0037 (9)
C10	0.0660 (12)	0.0605 (12)	0.0621 (11)	0.0125 (9)	0.0236 (9)	-0.0006 (9)
C11	0.0863 (14)	0.0781 (14)	0.0830 (15)	0.0148 (12)	0.0380 (12)	-0.0110 (11)
C12	0.0910 (16)	0.114 (2)	0.0986 (18)	0.0141 (14)	0.0549 (15)	-0.0037 (14)
C13	0.0850 (15)	0.0948 (17)	0.0980 (17)	0.0036 (13)	0.0418 (14)	0.0061 (13)
C14	0.0968 (15)	0.0715 (13)	0.1198 (19)	-0.0030 (11)	0.0617 (15)	-0.0042 (12)
C15	0.0875 (14)	0.0619 (12)	0.1025 (16)	0.0039 (10)	0.0562 (13)	-0.0060 (11)
F1	0.1104 (10)	0.1162 (11)	0.1240 (11)	-0.0001 (8)	0.0742 (9)	0.0031 (8)
01	0.1175 (12)	0.0406 (8)	0.1328 (13)	0.0027 (7)	0.0647 (10)	-0.0009 (7)
O2	0.1094 (12)	0.0522 (8)	0.1332 (13)	0.0088 (7)	0.0645 (11)	-0.0136 (8)

Geometric parameters (Å, °)

C1—F1	1.354 (2)	С8—Н8	0.9300
C1—C2	1.362 (3)	C9—C10	1.483 (3)
C1—C6	1.370 (3)	C10—C15	1.389 (3)
C2—C3	1.369 (3)	C10-C11	1.393 (3)
С2—Н2	0.9300	C11—C12	1.393 (3)
C3—C4	1.404 (3)	C11—H11	0.9300
С3—Н3	0.9300	C12—C13	1.365 (3)
C4—C5	1.394 (2)	C12—H12	0.9300
C4—C7	1.487 (3)	C13—C14	1.386 (3)
C5—C6	1.381 (3)	С13—Н13	0.9300
С5—Н5	0.9300	C14—C15	1.380 (3)
С6—Н6	0.9300	C14—H14	0.9300
O1—C7	1.299 (2)	C15—H15	0.9300
O2—C9	1.295 (2)	O1—H2A	1.30 (3)
С7—С8	1.388 (2)	O2—H2A	1.23 (3)
C8—C9	1.410 (3)		
F1—C1—C2	119.14 (18)	O2—C9—C8	119.94 (18)
F1—C1—C6	118.98 (18)	O2—C9—C10	115.95 (17)
C2—C1—C6	121.88 (18)	C8—C9—C10	124.11 (16)
C1—C2—C3	119.24 (18)	C15—C10—C11	117.95 (18)
С1—С2—Н2	120.4	C15—C10—C9	122.10 (16)
С3—С2—Н2	120.4	C11—C10—C9	119.94 (17)
C2—C3—C4	121.53 (19)	C12-C11-C10	120.73 (19)

С2—С3—Н3	119.2	C12—C11—H11	119.6
С4—С3—Н3	119.2	C10-C11-H11	119.6
C5—C4—C3	117.09 (18)	C13—C12—C11	120.5 (2)
C5—C4—C7	122.68 (16)	C13—C12—H12	119.8
C3—C4—C7	120.22 (17)	C11—C12—H12	119.8
C6—C5—C4	121.45 (18)	C12—C13—C14	119.4 (2)
С6—С5—Н5	119.3	С12—С13—Н13	120.3
С4—С5—Н5	119.3	C14—C13—H13	120.3
C1—C6—C5	118.82 (18)	C15-C14-C13	120.5 (2)
С1—С6—Н6	120.6	C15—C14—H14	119.7
С5—С6—Н6	120.6	C13-C14-H14	119.7
O1—C7—C8	119.79 (17)	C14—C15—C10	120.90 (18)
O1—C7—C4	116.27 (16)	C14—C15—H15	119.5
C8—C7—C4	123.94 (15)	C10-C15-H15	119.5
С7—С8—С9	121.86 (16)	C7—O1—H2A	99.8 (11)
С7—С8—Н8	119.1	С9—О2—Н2А	100.1 (12)
С9—С8—Н8	119.1		
F1—C1—C2—C3	-179.05 (18)	C4—C7—C8—C9	178.70 (16)
C6—C1—C2—C3	0.5 (3)	С7—С8—С9—О2	2.9 (3)
C1—C2—C3—C4	0.0 (3)	C7—C8—C9—C10	-176.33 (17)
C2—C3—C4—C5	-0.3 (3)	O2-C9-C10-C15	-164.43 (17)
C2—C3—C4—C7	179.74 (17)	C8—C9—C10—C15	14.9 (3)
C3—C4—C5—C6	0.1 (3)	O2—C9—C10—C11	14.5 (3)
C7—C4—C5—C6	-179.97 (17)	C8—C9—C10—C11	-166.16 (17)
F1—C1—C6—C5	178.82 (17)	C15-C10-C11-C12	-0.8 (3)
C2-C1-C6-C5	-0.7 (3)	C9-C10-C11-C12	-179.86 (19)
C4—C5—C6—C1	0.4 (3)	C10-C11-C12-C13	1.5 (3)
C5—C4—C7—O1	-172.91 (17)	C11-C12-C13-C14	-0.8 (4)
C3—C4—C7—O1	7.0 (2)	C12-C13-C14-C15	-0.6 (4)
C5—C4—C7—C8	7.8 (3)	C13-C14-C15-C10	1.2 (3)
C3—C4—C7—C8	-172.31 (18)	C11-C10-C15-C14	-0.5 (3)
O1—C7—C8—C9	-0.6 (3)	C9—C10—C15—C14	178.53 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H2A…O1	1.23 (3)	1.30 (3)	2.4827 (19)	157 (2)

Fig. 1

